Authors: Brown JT, Saigal A, Karia N, Patel RK, Razvi Y, Steeden JA

PMID: 35470679 PMCID: PMC9238618 DOI: 10.1161/JAHA.121.024207

Abstract

Background Ongoing exercise intolerance of unclear cause following COVID-19 infection is well recognized but poorly understood. We investigated exercise capacity in patients previously hospitalized with COVID-19 with and without self-reported exercise intolerance using magnetic resonance-augmented cardiopulmonary exercise testing. Methods and Results Sixty subjects were enrolled in this single-center prospective observational case-control study, split into 3 equally sized groups: 2 groups of age-, sex-, and comorbidity-matched previously hospitalized patients following COVID-19 without clearly identifiable postviral complications and with either self-reported reduced (COVIDreduced) or fully recovered (COVIDnormal) exercise capacity; a group of age- and sex-matched healthy controls. The COVIDreducedgroup had the lowest peak workload (79W [Interquartile range (IQR), 65-100] versus controls 104W [IQR, 86-148]; P=0.01) and shortest exercise duration (13.3±2.8 minutes versus controls 16.6±3.5 minutes; P=0.008), with no differences in these parameters between COVIDnormal patients and controls. The COVIDreduced group had: (1) the lowest peak indexed oxygen uptake (14.9 mL/minper kg [IQR, 13.1-16.2]) versus controls (22.3 mL/min per kg [IQR, 16.9-27.6]; P=0.003) and COVIDnormal patients (19.1 mL/min per kg [IQR, 15.4-23.7]; P=0.04); (2) the lowest peak indexed cardiac output (4.7±1.2 L/min per m2) versus controls (6.0±1.2 L/min per m2; P=0.004) and COVIDnormal patients (5.7±1.5 L/min per m2; P=0.02), associated with lower indexed stroke volume (SVi:COVIDreduced 39±10 mL/min per m2 versus COVIDnormal 43±7 mL/min per m2 versus controls 48±10 mL/min per m2; P=0.02). There were no differences in peak tissue oxygen extraction or biventricular ejection fractions between groups. There were no associations between COVID-19 illness severity and peak magnetic resonance-augmented cardiopulmonary exercise testing metrics. Peak indexed oxygen uptake, indexed cardiac output, and indexed stroke volume all correlated with duration from discharge to magnetic resonance-augmented cardiopulmonary exercise testing (P<0.05). Conclusions Magnetic resonance-augmented cardiopulmonary exercise testing suggests failure to augment stroke volume as a potential mechanism of exercise intolerance in previously hospitalized patients with COVID-19. This is unrelated to disease severity and, reassuringly, improves with time from acute illness.[/fusion_text][fusion_text columns="" column_min_width="" column_spacing="" rule_style="" rule_size="" rule_color="" hue="" saturation="" lightness="" alpha="" content_alignment_medium="" content_alignment_small="" content_alignment="" hide_on_mobile="small-visibility,medium-visibility,large-visibility" sticky_display="normal,sticky" class="" id="" margin_top="" margin_right="" margin_bottom="" margin_left="" fusion_font_family_text_font="" fusion_font_variant_text_font="" font_size="" line_height="" letter_spacing="" text_transform="" text_color="" animation_type="" animation_direction="left" animation_color="" animation_speed="0.3" animation_delay="0" animation_offset=""]Keywords: COVID‐19; cardiopulmonary exercise testing; cardiovascular magnetic resonance imaging; exercise; stroke volume.

More on: COVID-19