Authors: Rich GT.
PMID: 28165426 doi: 10.3390/nu9020111 PMCID: PMC5331542
Abstract
We have studied the uptake of quercetin aglycone into CaCo-2/TC7 cells in the presence and absence of mixed micelles that are present in the human small intestine. The micelles inhibited the transport of quercetin into the cells. To gain an understanding of why this is the case we examined the solubilisation of quercetin in micelles of differing composition and into pure lipid phases. We did this by using the environmental sensitivity of quercetin’s UV-visible absorption spectra and measurement of free quercetin by filtration of the micellar solutions. The nature of the micelles was also studied by pyrene fluorescence. We found that the partitioning of quercetin into simple bile salt micelles was low and for mixed micelles was inhibited by increasing the bile salt concentration. The affinity of quercetin decreased in the order egg phosphatidylcholine (PC) = lysoPC > mixed micelles > bile salts. These results, together with the innate properties of quercetin, contribute to an understanding of the low bioavailability of quercetin.
Keywords: mixed micelles, UV-visible spectra, pyrene fluorescence, small intestine, bioaccessibility, phosphatidylcholine, lysophosphatidylcholine, bile salts
More on: I-CARE Early Covid | I-CARE Flu and RSV | I-PREVENT | I-RECOVER Post-Vaccine
More on: quercetin