Auhtors: Yu C, Li W-b, Liu J-b, Lu J-w, Feng J-f
PMID: 29282893 PMCID: PMC5806108 DOI: 10.1002/cam4.1287
Abstract
In eukaryotic cells, autophagy is a process associated with programmed cell death. During this process, cytoplasmic proteins and organelles are engulfed by double-membrane autophagosomes, which then fuse with lysosomes to form autolysosomes. These autolysosomes then degrade their contents to recycle the cellular components. Autophagy has been implicated in a wide variety of physiological and pathological processes that are closely related to tumorigenesis. In recent years, an increasing number of studies have indicated that nonsteroidal anti-inflammatory drugs, such as celecoxib, meloxicam, sulindac, aspirin, sildenafil, rofecoxib, and sodium salicylate, have diverse effects in cancer that are mediated by the autophagy pathway. These nonsteroidal anti-inflammatory drugs can modulate tumor autophagy through the PI3K/Akt/mTOR, MAPK/ERK1/2, P53/DRAM, AMPK/mTOR, Bip/GRP78, CHOP/ GADD153, and HGF/MET signaling pathways and inhibit lysosome function, leading to p53-dependent G1 cell-cycle arrest. In this review, we summarize the research progress in autophagy induced by nonsteroidal anti-inflammatory drugs and the molecular mechanisms of autophagy in cancer cells to provide a reference for the potential benefits of nonsteroidal anti-inflammatory drugs in cancer chemotherapy.
Keywords: Autophagy; nonsteroidal anti-inflammatory drugs; programmed cell death
Source: https://pubmed.ncbi.nlm.nih.gov/29282893/
Archive: https://archive.is/UgYqe