An overview of the MATH+, I-MASK+ and I-RECOVER Protocols

A Guide to the Management of COVID-19

Developed and Updated by Paul Marik, MD, FCP (SA), FRCP (C), FCCP, FCCM for the COVID-19 Critical Care Alliance (FLCCC Alliance).

This is our recommended approach to COVID-19 based on the best (and most recent) literature. This is a highly dynamic topic; therefore, we will be updating the guideline as new information emerges. Please check on the FLCCC Alliance website for updated versions of this protocol. www.flccc.net

Disclaimer: The information in this document is provided as guidance to physicians World-Wide on the prevention and treatment of COVID-19. Our guidance should only be used by medical professionals in formulating their approach to COVID-19. Patients should always consult with their physician before starting any medical treatment.

The FLCCC Alliance™ is registered as a 501(c)(3) non-profit organization.
Figure 1. The course of COVID-19 and General Approach to treatment

THIS IS A STEROID RESPONSIVE DISEASE:
HOWEVER, TIMING IS CRITICAL-
Not too early Not too late.
<table>
<thead>
<tr>
<th></th>
<th>Pre-exposure/Post-Exposure/Incubation</th>
<th>Symptomatic Phase</th>
<th>Pulmonary/inflammatory phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxychloroquine</td>
<td>Unclear benefit</td>
<td>No benefit</td>
<td>? Trend to harm</td>
</tr>
<tr>
<td>Remdesivir</td>
<td>n/a</td>
<td>No Benefit</td>
<td>?? Reduced time to recovery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No mortality benefit</td>
</tr>
<tr>
<td>Lopinavir-Ritonavir</td>
<td>n/a</td>
<td>No benefit</td>
<td>No benefit</td>
</tr>
<tr>
<td>Interferon α/β</td>
<td>Inhaled ? Benefit</td>
<td>No benefit</td>
<td>Harm</td>
</tr>
<tr>
<td>Tocilizumab</td>
<td>n/a</td>
<td>n/a</td>
<td>Unclear Benefit</td>
</tr>
<tr>
<td>Convalescent Serum</td>
<td>n/a</td>
<td>No benefit</td>
<td>No Benefit</td>
</tr>
<tr>
<td>Monoclonal Abs</td>
<td>n/a</td>
<td>Unclear benefit</td>
<td>Harm</td>
</tr>
<tr>
<td>Colchicine</td>
<td>n/a</td>
<td>Unclear benefit</td>
<td>No Benefit</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>n/a</td>
<td>Trend to harm</td>
<td>BENEFIT</td>
</tr>
<tr>
<td>LMWH</td>
<td>n/a</td>
<td>n/a</td>
<td>BENEFIT</td>
</tr>
<tr>
<td>Ivermectin</td>
<td>BENEFIT</td>
<td>BENEFIT</td>
<td>BENEFIT</td>
</tr>
</tbody>
</table>

*based on randomized controlled trials (see supporting information below)
Figure 2. Timing of the initiation of anti-inflammatory therapy

I. Incubation II. Symptomatic III. Early Pulmonary Phase IV. Late Pulmonary Phase

Oxygen Saturation

Viral replication

Inflammatory Response

1 5 12 15 28

Time Course (days)

Antiviral Rx Start Anti-inflammatory Rx Escalate Anti-inflammatory Rx
Figure 3. Time course of laboratory tests for COVID-19

I. Incubation II. Symptomatic III. Pulmonary Phase/Recovery

PCR likely positive

PCR likely negative

Nasopharyngeal Swab PCR

Virus isolation From respiratory tract

Infectious

IgG antibodies

IgM antibodies

Week -1 | Week 1 | Week 2 | Week 3 | Week 4 | Week 5

Time Course (Weeks)

Figure 4. SARS-CoV-2 Structure and RNA genome

60-140 nm

Nucleocapsid protein (N) + RNA
Envelope glycoprotein (E)
Membrane protein (M)
Spike protein (S)
Hemagglutinin esterase (HE)
Lipid bilayer
ACE2 receptor
Host cell membrane

SARS-CoV-2 (~29800 bp)

Leader

ns1 ns2 PLpro ns3 3CL ns6 7 8 9 10

ORF 1a

ORF 1b

3b M

E 7a

9a 9b

3a

6 7b

RdRp Hel ns14 ns15 ns16

While there is no cure or “Magic-bullet” for COVID-19, recently, a number of therapeutic agents have shown great promise for both the prevention and treatment of this disease including Ivermectin, Vitamin D, quercetin, melatonin, Vitamin C, fluvoxamine and corticosteroids. It is likely that no single drug will be effective in treating this complex disease and that multiple drugs with different mechanisms of action used in specific phases of the disease will be required. Furthermore, a growing body of evidence suggests that many of these agents may act synergistically in various phases of the disease. [1-3]

As the pandemic has played out over the last year over four million patients have died world-wide, and the pandemic shows no signs of abating. Most countries across the globe have limited resources to manage this humanitarian crisis. We developed the MATH+ protocol to provide guidance for the treatment of the pulmonary phase of this disease with the goal of reducing the hospital mortality from this devastating disease. However, it soon became obvious that our emphasis needed to shift to the prevention and early (home) treatment of this catastrophic disease to prevent patients progressing to the pulmonary phase and requiring hospitalization (see Figure 5). Hence, we developed the I-MASK+ and the Test and Treat protocols. While we strongly believe that such an approach can mitigate the development and progression of this disease, limit deaths, and allow the economy to re-open, “Health-care authorities” across the globe have been silent in this regard, including the WHO, CDC, NIH, etc (see NIH Guidance, Figure 6a and 6b). While vaccination is part of the solution, it will take many months if not years to vaccinate 70-85% of the world’s population of 7.8 billion people required for “herd immunity” (it is questionable whether this goal will ever be achieved). We believe that the I-MASK+ protocol provides a bridge to universal vaccination. Furthermore we have developed the I-MASS protocol for a MASS Distribution campaign to lessen the impact of COVID-19 in resource-poor countries. Mutant strains of SARS-CoV-2 have recently appeared, these stains have demonstrated increased transmissibility.[4,5] Many of these mutations involve the spike protein (against which almost all of the vaccines have targeted), raising the real possibility that the vaccines may become less effective against the mutating strains of SARS-CoV-2.[5-7] And, finally the Post-COVID syndrome or “long-hauler syndrome” has emerged as a common and disabling disorder its pathophysiology of which is poorly understood. We offer the I-RECOVER protocol to help treat this disabling disorder. Recently, the pos-vaccination syndrome has emerged as a problematic entity; we believe that the I-RECOVER protocol has utility in treating this syndrome.

Figure 5. Treatment Phases of COVID-19
Figure 2. Therapeutic Management of Hospitalized Adults With COVID-19 Based on Disease Severity

<table>
<thead>
<tr>
<th>DISEASE SEVERITY</th>
<th>PANEL'S RECOMMENDATIONS</th>
</tr>
</thead>
</table>
| Hospitalized but Does Not Require Supplemental Oxygen | The Panel recommends against the use of dexamethasone (AIIa) or other corticosteroids (AIII).^a
There is insufficient evidence to recommend either for or against the routine use of remdesivir. For patients who are at high risk of disease progression, the use of remdesivir may be appropriate. |
| Hospitalized and Requires Supplemental Oxygen | Use one of the following options: |
| | - Remdesivir^{b,e} (e.g., for patients who require minimal supplemental oxygen) (BIIa) |
| | - Dexamethasone^c plus remdesivir^{d,e} (e.g., for patients who require increasing amounts of supplemental oxygen) (BIII) |
| | - Dexamethasone^c (when combination therapy with remdesivir cannot be used or is not available) (BII) |
| Hospitalized and Requires Oxygen Delivery Through a High-Flow Device or Noninvasive Ventilation | Use one of the following options: |
| | - Dexamethasone^c (AII) |
| | - Dexamethasone^c plus remdesivir^{d,e} (BIII) |
| | For patients who were recently hospitalized^a with rapidly increasing oxygen needs and systemic inflammation:
 - Add either baricitinib^{b,a} (BIIa) or tocilizumab^{b,h} (BIIa) to one of the two options above |
| Hospitalized and Requires IMV or ECMO | For most patients: |
| | - Dexamethasone^{d,i} (AII) |
| | For patients who are within 24 hours of admission to the ICU: |
| | - Dexamethasone^{d,i} plus tocilizumab^{b,h} (BIIa) |

Rating of Recommendations: A = Strong; B = Moderate; C = Optional
Rating of Evidence: I = One or more randomized trials without major limitations; IIa = Other randomized trials or subgroup analyses of randomized trials; IIb = Nonrandomized trials or observational cohort studies; III = Expert opinion
Prevention and Prophylaxis of SARS-CoV-2 Infection

Last Updated: July 8, 2021

Summary Recommendations

- The COVID-19 Treatment Guidelines Panel (the Panel) recommends that health care providers follow recommendations from the Advisory Committee on Immunization Practices when using SARS-CoV-2 vaccines (A1).
- The Panel recommends against the use of any drugs for SARS-CoV-2 pre-exposure prophylaxis (PrEP), except in a clinical trial (AIII).
- The Panel recommends against the use of hydroxychloroquine for SARS-CoV-2 post-exposure prophylaxis (PEP) (A1).
- The Panel recommends against the use of other drugs for SARS-CoV-2 PEP, except in a clinical trial (AIII).

Rating of Recommendations: A = Strong; B = Moderate; C = Optional

Rating of Evidence: I = One or more randomized trials without major limitations; IIA = Other randomized trials or subgroup analyses of randomized trials; IIB = Nonrandomized trials or observational cohort studies; III = Expert opinion
Pre and Postexposure Prophylaxis (The I-MASK+ protocol)

The components of the I-MASK Prophylaxis and Early Treatment protocol are illustrated in Figures 7. Recent data suggests that ivermectin, melatonin as well as the combination of quercetin (or mixed flavonoids) and vitamin C may play an important role in both pre-exposure and postexposure prophylaxis. [2,8] The evidence supporting the use of ivermectin for the prophylaxis of COVID-19 is provided by the comprehensive review by Kory et al. [9] It is important to emphasize that ALL of the medications included in our prophylactic regimen are inexpensive, safe, and widely available. The I-MASK+ protocol MUST be part of an overall strategy which includes common sense public health measures, i.e., masks, social distancing, and avoidance of large groups of people.[10]

Figure 7. The I-MASK prophylactic and Early Treatment Protocol.

<table>
<thead>
<tr>
<th>PREVENTION PROTOCOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivermectin<sup>1</sup></td>
</tr>
<tr>
<td>(take with or after meals)</td>
</tr>
<tr>
<td>Vitamin D3</td>
</tr>
<tr>
<td>Vitamin C</td>
</tr>
<tr>
<td>Quercetin</td>
</tr>
<tr>
<td>Zinc</td>
</tr>
<tr>
<td>Melatonin</td>
</tr>
</tbody>
</table>

EARLY OUTPATIENT PROTOCOL:³

Ivermectin¹	0.2–0.4 mg/kg per dose — one dose daily, minimum of 2 days, continue for 5 days or until recovered⁴
(take with or after meals)	*Use upper dose range if: 1) in regions with more aggressive variants; 2) treatment started on or after day 5 of symptoms in or pulmonary phase; or 3) multiple comorbidities/risk factors.*
Fluvoxamine	50 mg twice daily for 10–14 days.
Nasopharyngeal Sanitation	Steamed essential oil inhalation 3 times a day (i.e. vapo-rub) and/or chlorhexidine/benzylamine mouthwash gargles and Betadine nasal spray 2–3 times a day
Vitamin D3	4,000 IU/day
Vitamin C	500–1,000 mg twice a day
Quercetin	250 mg twice a day
Zinc	100 mg/day
Melatonin	10 mg before bedtime (causes drowsiness)
Aspirin	325 mg/day (unless contraindicated)
Pulse Oximeter	Monitoring of oxygen saturation is recommended

Behavioral Prevention

WEAR MASKS

Must wear cloth, surgical, or N95 mask (without valve) in all indoor spaces with non-household persons.

Must wear a N95 mask (without valve) during prolonged exposure to non-household persons in any confined, poorly ventilated area.

KEEP DISTANCE

Until the end of the Covid-19 crisis, we recommend keeping a minimum distance of approx. 2 m/6 feet in public from people who are not from your own household.
Components of the I-MASK Prophylactic Protocol

- Ivermectin for postexposure prophylaxis (see ClinTrials.gov NCT04422561). 0.2 mg/kg immediately then repeat 2nd dose in 48 hours. Ivermectin is best taken with a meal or just following a meal (greater absorption). [11] Oropharyngeal sanitation also suggested (see section on home treatment below).

- Ivermectin for pre-exposure prophylaxis (in HCW) and for prophylaxis in high-risk individuals (> 60 years with co-morbidities, morbid obesity, long term care facilities, etc). 0.2 mg/kg per dose - start treatment with one dose, 2nd dose 48 hours later, then 1 dose every 7 days (i.e. weekly).[12-17] We believe that weekly dosing is likely the most practical, cost effective and safest prophylactic regimen. See dosing Table below. Ivermectin has a number of potentially serious drug-drug interactions; please check for potential drug interactions at Ivermectin Drug Interactions - Drugs.com (also see below). The most important drug-drug interactions occur with cyclosporin, tacrolimus, anti-retroviral drugs, and certain anti-fungal drugs. While ivermectin has a remarkable safety record, [18] fixed drug eruptions (diffuse rash) and Stevens Johnson Syndrome have rarely been reported. [19,20] While hepatitis is commonly quoted as a side effect, we are aware of a single case report of reversible hepatitis.[21] The safety of ivermectin in pregnancy has not been determined. [22] Ivermectin may increase the risk of congenital malformations particularly when used in the first trimester. [22] US Food and Drug Administration (FDA) has classified ivermectin as pregnancy category C—i.e, “Animal reproduction studies have shown an adverse effect on the fetus and there are no adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks”. In pregnant patients with symptomatic COVID-19 infections the risk and benefits of ivermectin should be discussed with the patient, and informed consent obtained from the patient should the drug be prescribed. Additionally, women should be counselled that low concentrations of ivermectin are present in breast milk; the implications of this finding are unclear. [23]

- Vitamin D3 1000–3000 IU/day (25-75 mcg). An alternative strategy is 40 000 IU weekly. Note RDA (Recommended Daily Allowance) is 800–1000 IU/day. The safe upper-dose daily limit is likely < 4000 IU/day. Vitamin D insufficiency has been associated with an increased risk of acquiring COVID-19 and from dying from the disease. [24-48] Vitamin D supplementation may therefore prove to be an effective and cheap intervention to lessen the impact of this disease, particularly in vulnerable populations, i.e., the elderly, those of color, obese and those living > 45° latitude. [30-45,48] It is likely that the greatest benefit from vitamin D supplementation will occur in vitamin D insufficient individuals who take vitamin D prophylactically; once vitamin D insufficient individuals develop COVID-19 the benefits will likely be significantly less. [49] This concept is supported by a recent study which demonstrated that residents of a long-term care facility who took vitamin D supplementation had a much lower risk of dying from COVID-19. [46]

- Vitamin C 500 – 1000 mg BID (twice daily) and Quercetin 250 mg daily. [50-62] Due to the possible drug interaction between quercetin and ivermectin (see below) these drugs should not be taken simultaneously (i.e. should be staggered morning and night). Vitamin C has important anti-inflammatory, antioxidant, and immune enhancing properties, including increased synthesis of type I interferons.[53,63,64] Quercetin has direct viricidal properties against a range of viruses, including SARS-CoV-2, and is a potent antioxidant and anti-inflammatory agent. [51,56,61,61,65-73] Quercetin is a potent inhibitor of inflammasome activation, which believed to play a major role in the pathophysiology of the COVID-19 immune dysfunction.[73] In addition, quercetin acts as a zinc ionophore. [74] It is likely that vitamin C and quercetin have synergistic prophylactic benefit. [2] A mixed flavanoid supplement containing quercetin, green tea catechins and anthrocyanins (from berries) may be preferable to a quercetin supplement alone; [75-79] this may further minimize the risk of quercetin related side-effects. It should be
noted that in vitro studies have demonstrated that quercetin and other flavonoids interfere with thyroid hormone synthesis at multiple steps in the synthetic pathway. [80-83] The use of quercetin has rarely been associated with hypothyroidism. The clinical impact of this association may be limited to those individuals with pre-existent thyroid disease or those with sub-clinical thyroidism.[84] In women high consumption of soya was associated with elevated TSH concentrations.[85] The effect on thyroid function may be dose dependent, hence for chronic prophylactic use we suggest that the lowest dose be taken. Quercetin should be used with caution in patients with hypothyroidism and TSH levels should be monitored. It should also be noted quercetin may have important drug-drug interactions; the most important drug-drug interaction is with cyclosporin and tacrolimus. [86] In patients taking these drugs it is best to avoid quercetin; if quercetin is taken cyclosporin and tacrolimus levels must be closely monitored.

- **Melatonin (slow release):** Begin with 0.3 mg and increase as tolerated to 6 mg at night. [1,8,87-93] Melatonin has anti-inflammatory, antioxidant, immunomodulating and metabolic effects that are likely important in the mitigation of COVID-19 disease.[94-96] A recent large retrospective study demonstrated that the use of melatonin in intubated patients with COVID-19 significantly reduced the risk of death (HR 0.1; p=0.0000000715). [95] It is intriguing to recognize that bats, the natural reservoir of coronavirus, have exceptionally high levels of melatonin, which may protect these animals from developing symptomatic disease. [97] The slow release (extended release) formulation of melatonin is preferred as it more closely replicates the normal circadian rhythm. [87] There is marked inter-individual variation in the metabolism of melatonin (first past metabolism) hence the dose must be individualized.[87] High serum levels are associated with hyper-REM sleep and bad dreams. Rapid release melatonin (usual over the counter formulation) results in early high peaks that does not replicate the normal circadian pattern; hence it is important to take the slow release/extended release formulation.

- **Zinc 30–50 mg/day (elemental zinc).** [57,59,60,98-102] Zinc is essential for innate and adaptive immunity.[100] In addition, Zinc inhibits RNA dependent RNA polymerase in vitro against SARS-CoV-2 virus.[99] Due to competitive binding with the same gut transporter, prolonged high dose zinc (> 50mg day) should be avoided as this is associated with copper deficiency. [103] Commercial zinc supplements contain 7 to 80 mg of elemental zinc, and are commonly formulated as zinc oxide or salts with acetate, gluconate, and sulfate. 220 mg zinc sulfate contains 50 mg elemental zinc.

- **B complex vitamins** [104-108].

- **Oropharyngeal hygiene with twice daily anti-viral mouth mouth/gargle (see below).**

 - **Optional:** Famotidine 20–40 mg/day [109-115]. Low level evidence suggests that famotidine may reduce disease severity and mortality. However, the findings of some studies are contradictory. While it was postulated that famotidine inhibits the SARS-CoV-2 papain-like protease (PLpro) as well as the main protease (3CLpro) this mechanism has been disputed. [112] Furthermore, a number of studies have demonstrated an association between the use of proton pump inhibitors (PPI’s) with an increased risk of contracting COVID-19 and with worse outcomes. [116,117] This data suggest that famotidine may be the drug of choice when acid suppressive therapy is required.

 - **Optional/Experimental:** Interferon-α nasal spray for health care workers [118].

Disclaimer: The safety of ivermectin in pregnancy has not been established. Particularly the use in the 1st trimester should be discussed with your doctor beforehand.
Ivermectin dosing: 200 ug/kg or fixed dose of 12 mg (≤ 80kg) or 18 mg (≥ 80kg).[119] Depending on the manufacturer ivermectin is supplied as 3mg, 6 mg or 12 mg tablets.

- 50-64.9 kg - 12mg
- 65-79.9 kg - 15mg
- 80-94.9 kg - 18mg
- 95-109.9 kg - 21mg
- ≥ 110 kg - 24mg

Drug Interactions with Ivermectin

Drug Interactions. (From Medscape).
Patents taking any of these medications should discuss with their treating physicians.

<table>
<thead>
<tr>
<th>SERIOUS (4)</th>
<th>MONITOR CLOSELY (possible) (49)</th>
<th>Especially those with (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Alternative</td>
<td>Amiodarone</td>
<td>Glicaprevir/Pibrentasvir</td>
</tr>
<tr>
<td>Erdafitinib</td>
<td>Atorvastatin</td>
<td>Indinavir</td>
</tr>
<tr>
<td>Lasmiditan</td>
<td>Berotralstat</td>
<td>Istradeoxyline</td>
</tr>
<tr>
<td>Quinidine</td>
<td>Bosutinib</td>
<td>Itraconazole (*)</td>
</tr>
<tr>
<td>Tepotinib</td>
<td>Clarithromycin (*)</td>
<td>Ivacaftor</td>
</tr>
<tr>
<td>Erythromycin base</td>
<td>Clotrimazole</td>
<td>Ketoconazole (*)</td>
</tr>
<tr>
<td>Erythromycin ethylsuccinate (*)</td>
<td>Dronedarone</td>
<td>Lapatinib</td>
</tr>
<tr>
<td>Erythromycin lactobionate (*)</td>
<td>Elagolix</td>
<td>Lomitapide</td>
</tr>
<tr>
<td>Erythromycin stearate (*)</td>
<td>Eliglustat</td>
<td>Lonafarnib</td>
</tr>
<tr>
<td>Felodipine</td>
<td>Erythromycin base</td>
<td>Loratadine</td>
</tr>
<tr>
<td>Fosphenytoin</td>
<td>Erythromycin lactobionate (*)</td>
<td>Lovastatin</td>
</tr>
<tr>
<td>Fostamatinib</td>
<td>Erythromycin stearate (*)</td>
<td>Nefazodone</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>Fosphenytoin</td>
<td>Nicardipine</td>
</tr>
<tr>
<td>Trazodone</td>
<td>Fostamatinib</td>
<td>Nifedipine</td>
</tr>
<tr>
<td>Verapamil (*)</td>
<td>Fosphenytoin</td>
<td>Nilotinib</td>
</tr>
</tbody>
</table>

(***) Not clear. May increase ivermectin levels
Symptomatic patients at home (I-MASK+ EARLY Treatment Protocol)

- Ivermectin 0.2-0.4 mg/kg – one dose daily for 5 days or until recovered. [14,18,24-27,120-132]. Higher doses (0.4 mg/kg) often required in a) regions with more aggressive variants, b) treatment started on or after 5 days of symptoms or c) in patients in pulmonary phase, d) extensive CT involvement or e) extensive comorbidities/risk factors (older age, obesity, diabetes). Ivermectin is best taken with a meal or just following a meal (greater absorption). See drug-drug interactions above. It should be noted that multiday treatment has been shown to be more clinically effective than single-day dosing.
- Vitamin C 500 – 1000 mg BID and Quercetin 250 mg BID (or mixed flavonoid supplement). Due to the possible drug interaction between quercetin and ivermectin (see above) these drugs should not be taken simultaneously (i.e. should be staggered morning and night).
- Zinc 75–100 mg/day (elemental zinc)
- Melatonin 10 mg at night (the optimal dose is unknown) [93-96] The slow release/extended release preparation is preferred as it minimizes the risk of bad dreams.
- Calcifediol 0.2 mg day 1, day 3 and day 7 then weekly. Vitamin D3 2000–4000 IU/day (50-100 mcg) is an alternative. [133] In the acute setting calcifediol appears to be more effective than vitamin D3. [134] Calcifediol is more efficiently absorbed, achieves 25-OH vitamin D levels quicker and is three times more potent than vitamin D3. [135,136] However, it is important to note that the optimal dose of vitamin D in the acute setting is unknown.[137,138] Very high doses may paradoxically block the vitamin D receptor.
- ASA 325 mg/day (unless contraindicated). ASA has anti-inflammatory, antithrombotic, immunomodulatory and antiviral effects.[139-141] Platelet activation plays a major role in propagating the prothrombotic state associated with COVID-19. [142-144]
- B complex vitamins
- Oropharyngeal sanitization. [145] Inhaled steam supplemented with antimicrobial essential oils (e.g VapoRub inhalations) [146] and/or antiseptic mouthwashes/throat rinses (chlorhexidine, povidone-iodine and cetlypyridinium Chloride) and/or povidone-iodine (Betadine) nasal spray/antiseptic applied 2-3 times per day. [147-152] A mouth wash containing Cetylpyridinium Chloride (e.g. Crest, Scope mouthwash™) has broad antimicrobial properties and has been shown to be effective in controlling gingivitis and gingival plaque.[153,154] In a study conducted in school-children gargling with both povidone-iodine and cetylpyridinium chloride (CPC) reduced oral bacterial load and were associated with a reduced incidence of the common cold and influenzae.[155] An in-vitro study demonstrated that CPC was highly viricidal against a human coronavirus.[156] In patients infected with SARS-CoV-2 both povidone-iodine and CPC were demonstrated to reduce viral loads.[149] In a primary prophylaxis study, a povidone-iodine throat spray administered three times daily proved to be highly effective in reducing the risk of laboratory confirmed SARS-CoV-2 infection.[147] Povidine-iodine (Betadine® Antiseptic Sore Throat Gargle™) or CPC (Crest, Scope™) mouth washes are therefore highly recommended. In addition, nasal decolonization/sanitation with Povidone Iodine Swabsticks (available at Amazon.com™) may have an additive (although unproven) benefit. Oropharyngeal and nasal sanitization will likely reduce the viral load in the upper airways, thereby reducing the risk of symptomatic disease and likely reducing disease severity. This may be particularly important with the Delta variant which replicates to achieve viral high loads in the nasopharynx/oropharynx.
- Vascepa (Ethyl eicosapentaenoic acid) 4g daily or Lovaza (EPA/DHA) 4g daily; alternative DHA/EPA 4g daily. Vascepa and Lovaza tablets must be swallowed and cannot be crushed, dissolved, or chewed. Omega-3 fatty acids have anti-inflammatory properties and play an important role in the resolution of inflammation. Omega-3 fatty acids reprogram
macrophages/monocytes from a M1 phenotype to a M2 phenotype.[157-159] As discussed later this is critical in the management of COVID-19. In addition, omega-3 fatty acids may have antiviral properties. [59,160-163]

- **Optional:** Fluvoxamine 50 – 100 mg BID. [164-168] This SSRI is recommended in those patients with more severe symptoms/more advanced disease. Fluvoxamine is a selective serotonin reuptake inhibitor (SSRI) that activates sigma-1 receptors decreasing cytokine production. [164,165] In addition, fluvoxamine reduces serotonin uptake by platelets, reduces histamine release from mast cells, interferes with lysosomal trafficking of virus and inhibits melatonin degradation.[169,170] Antidepressant medications (SSRI) deplete platelet serotonin content, thereby diminishing the release of serotonin following platelet aggregation.[171-173] The use of antidepressants has been associated with a lower risk of intubation and death in patients hospitalized with COVID-19. [167,168] Fluoxetine (Prozac; 20-40mg daily), has activity against the sigma-1 receptor and is an alternative should fluvoxamine not be available. [174]

- **Optional:** Famotidine 40 mg BID (reduce dose in patients with renal dysfunction) [109-115].

- **Optional (In MEN ONLY):** Men who develop COVID-19 have a significantly worse outcome than women (independent of other risk factors). [175] This effect may be mediated in part by testosterone. Testosterone increases the expression of the transmembrane protease, serine 2 (TMPRSS2) which is required for priming of the spike protein for cell fusion. [176] The anti-androgens dutasteride 0.5 mg/day [177] and proxalutamide 200 mg /day (NCT 04446429) have been demonstrated to reduce time to viral clearance, improve time to recovery and reduce hospitalization in men with COVID-19 in the outpatient setting. It should be noted that proxalutamide is not available in the USA.

- **Optional:** Interferon-α/β nasal spray, inhalation or s/c injection. [118,178-181] It should be noted that Zinc potentiates the effects of interferon.[182,183]

- In symptomatic patients, monitoring with home pulse oximetry is recommended (due to asymptomatic hypoxia). The limitations of home pulse oximeters should be recognized, and validated devices are preferred.[184] Multiple readings should be taken over the course of the day, and a downward trend should be regarded as ominous.[184] Baseline or ambulatory desaturation < 94% should prompt hospital admission. [185] The following guidance is suggested: [184]
 - Use the index or middle finger
 - Only accept values associated with a strong pulse signal
 - Observe readings for 30–60 seconds to identify the most common value
 - Remove nail polish from the finger on which measurements are made
 - Warm cold extremities prior to measurement

- **Unclear benefit:** Inhaled corticosteroids (budesonide). Two recent RCTs have demonstrated more rapid symptomatic improvement in ambulatory patients with COVID-19 treated with inhaled budesonide, however, there with no difference in the rate of hospitalization.[186,187] It should be noted that both these studies were open label (no placebo in the control arm) and that the primary end-point was subjective (time to symptom resolution). Corticosteroids downregulate the expression of interferons (hosts primary antiviral defenses) and downregulated ACE-2 expression (harmful). Furthermore, two population level studies suggest that inhaled corticosteroids may increase the risk of death in patients with COVID-19. [188,189] Based on these data the role of inhaled corticosteroids in the early phase of COVID-19 is unclear.

- **Unclear benefit (best avoided).** Colchicine 0.6mg BID for 3 days then reduce to 0.6mg daily for total of 30 days. In the COCORONA study colchicine reduced the need for hospitalization (4.5 vs 5.7%) in high risk patients. [190] Colchicine was associated with an increased risk of side effects most notably diarrhea and pulmonary embolism. It should be noted that in the RECOVERY trial colchicine failed to demonstrate a survival benefit in hospitalized patients. Due to potentially serious drug interactions with ivermectin (and other CYP 3A4 and p-glycoprotein
inhibitors) as well as with statins, [191] together with its marginal benefit colchicine is best avoided.

- **Not recommended: Systemic corticosteroids.** In the early symptomatic (viral replicative phase), corticosteroids may increase viral replication and disease severity.[192]

- **Not recommended: Hydroxychloroquine (HCQ).** The use of HCQ is highly controversial.[193] The best scientific evidence from randomized controlled trials suggests that HCQ has limited/no proven benefit for post exposure prophylaxis, for the early symptomatic phase and in hospitalized patients. [194-215] Considering, the unique pharmacokinetics of HCQ it is unlikely that HCQ would be of benefit in patients with COVID-19 infection (it takes 5–10 days to achieve adequate plasma and lung concentrations).[204,216-218] Finally, it should be recognized that those studies which are widely promoted to support the use of HCQ are severely methodologically flawed.[219-222]

- **Not recommended: Azithromycin, doxycycline, or quinolone antibiotics.** [223-225]

Mildly Symptomatic patients (on floor/ward in hospital).

- Ivermectin 0.4 – 0.6 mg/kg daily for 5 days or until recovered. A higher dose may be required in patients with more severe disease and in those in whom treatment is delayed. [14,18,24-27,120-129,131]. While ivermectin retains full efficacy against the variants (as best we know), the Delta variant results in very high viral loads and may take longer to eradicate. Ivermectin is best taken with a meal or just following a meal (greater absorption). It should be noted that ivermectin has potent anti-inflammatory properties apart from its antiviral properties.[226-229] See drug-drug interactions above.

- Methylprednisolone 80 mg bolus followed by 40 mg q 12 hourly (alternative: 80 mg bolus followed by 80 mg/240 ml normal saline IV infusion at 10 ml/hr); increase to 80 mg and then 125 mg q 12 hourly in patients with progressive symptoms and increasing CRP. There is now overwhelming and irrefutable evidence that corticosteroids reduce the risk of death in patients with the pulmonary phase of COVID-19 i.e., those requiring supplemental oxygen or higher levels of support. [230-242] We believe that the use of low-fixed dose dexamethasone is inappropriate for the treatment of the pulmonary phase of COVID-19. The role of inhaled corticosteroids (budesonide) is unclear and appears to be rather limited (as reviewed above). While 1) methylprednisolone is the corticosteroid of choice (see below) in those regions/counties where it is not available the following (in order of preference) may be substituted for methylprednisolone (dose adjusted according to methylprednisolone dosages), 2) prednisolone, 3) prednisone, 4) hydrocortisone, and 5) LASTLY dexamethasone.

- Enoxaparin 1mg/kg 12 hourly (see dosage adjustments and Xa monitoring below). The ATTACC, ACTIV-4a & REMAP-CAP trials demonstrated a significant reduction of the primary end point (composite of organ support days and hospital mortality) regardless of D-Dimer levels.[243,243]

- Vitamin C 500–1000 mg q 6 hourly and Quercetin 250–500 mg BID (if available)

- Zinc 75–100 mg/day (elemental zinc)

- Melatonin 10 mg at night (the optimal dose is unknown) [93]

- Calcifediol 0.2 mg day 1, day 3 and day 7 then weekly. [133] Vitamin D3 20,000–60,000 IU single oral dose is an alternative; this should be followed by 20,000 IU D3 weekly until discharged from hospital. In the acute setting calcifediol appears to be more effective than vitamin D3. [134]

- ASA 325 mg (if not contraindicated). Moderate-severe COVID infection results in profound platelet activation contributing to the pro-thrombotic state and increasing the inflammatory response.[143,144,244,245]

- B complex vitamins

- Fluvoxamine 50 -100 mg BID. Fluoxetine 20-40mg daily is an alternative.
• Vascepa (Ethyl eicosapentaenoic acid) 4g daily or Lovaza (EPA/DHA) 4g daily; alternative DHA/EPA 4g daily. Vascepa and Lovaza tablets must be swallowed and cannot be crushed, dissolved, or chewed.

• Atorvastatin 40-80 mg/day (reduce dose to 40 mg if taken with ivermectin due to possible drug-drug interaction). Statins have pleotropic anti-inflammatory, immunomodulatory, antibacterial, and antiviral effects. Statins reprogram macrophages/monocytes from a M1 phenotype to a M2 phenotype. [246,247] As discussed later this is critical in the management of COVID-19. In addition, statins decrease expression of PAI-1. Simvastatin has been demonstrated to reduce mortality in the hyper-inflammatory ARDS phenotype. [248] Preliminary data suggests atorvastatin may improve outcome in patients with COVID-19.[249-253] Due to numerous drug-drug interactions (including ivermectin) simvastatin should be avoided.

• Optional: Famotidine 40 mg BID (20–40 mg/day in renal impairment). [109-115] Famotidine may be useful for its protective effect on gastric mucosa, its anti-viral properties and histamine blocking properties.

• Optional: JAK inhibitors ruxolitinib or baricitinib. JAK inhibitors target JAK1, JAK2, JAK3, and whose inhibition downregulates the JAK/STAT signaling pathway decreasing cytokine concentrations.[254] These drugs have been shown to decrease the use of mechanical ventilation and the risk of death. [255] However the role of these drugs is unclear, and they should not be used in combination with corticosteroids. [256]

• Optional: The anti-androgen agents dutasteride 0.5 mg/day, proxalutamide 200 mg daily or finasteride 5 mg daily. It should be noted that proxalutamide is not available in the USA.

• Optional: The anti-serotonin agent, cyproheptadine 4–8 mg PO q 6 hour should be considered in patients with more severe disease. [257,258] Patients with COVID-19 have increased circulating levels of serotonin likely the result of increased platelet activation and decreased removal by the pulmonary circulation due to an extensive microcirculatory vasculopathy. [257,259-261] Increased circulating serotonin is associated with pulmonary, renal and cerebral vasoconstriction, and may partly explain the V/Q mismatch and reduced renal blood flow noted in patients with severe COVID-19 infection. [262-265] Furthermore, serotonin itself enhances platelet aggregation creating a propagating immuno-thrombotic cycle.[266] In addition, serotonin receptor blockade may reduce progression to pulmonary fibrosis. [267]

• Optional: Vascepa (Ethyl eicosapentaenoic acid) 4g daily or Lovaza (EPA/DHA) 4g daily; alternative DHA/EPA 4g daily. [268]

• Optional: Remdesivir 200 mg IV loading dose D1, followed by 100mg day IV for 9 days. [269,270] This agent has been reported to reduce time to recovery (based on an ordinal scale) in patients requiring low levels of supplemental oxygen. [270,271] The recently published SOLIDARITY trial demonstrated no mortality benefit of this agent in the entire treatment cohort or any subgroup.[272] Furthermore, the recent VA study showed no mortality benefit with Remdesivir but a longer length of hospital stay.[273] Considering the high cost of this agent and the lack of benefit on patient centered outcomes the role of this drug seems very limited. An in vitro study demonstrated marked synergy between Remdesivir and Ivermectin. [274] Considering the broad antiviral and anti-inflammatory effects of ivermectin, together with its remarkable safety record, this finding suggest that ivermectin should be prescribed in all patients receiving Remdesivir. However, Remdesivir should only be prescribed in the early viral replicative phase of COVID-19.

• Not recommended: Hydroxychloroquine, azithromycin, doxycycline, or quinolone antibiotics. [172,173]

• Not recommended: Colchicine. Recruitment to the colchicine arm of the RECOVERY trial has been closed as no mortality benefit was noted with colchicine (Mortality 20% colchicine, 19% standard of care). In addition, potentially serious drug-drug interactions exist with the use of
colchicine and CYP 3A4 and p-glycoprotein inhibitors (ivermectin, macrolide antibiotics, cyclosporin, etc) as well as with the use of statins. [191]

- N/C 2L/min if required (max 4 L/min; consider early t/f to ICU for escalation of care).
- Avoid Nebulization and Respiratory treatments. Use “Spinhaler” or MDI and spacer if required.
- T/f EARLY to the ICU for increasing respiratory signs/symptoms, increasing oxygen requirements and arterial desaturation.

MATH + PROTOCOL (for patients admitted to the ICU) [275,276]

1. **Methylprednisolone** 80 mg loading dose followed by 40 mg q 12 hourly for at least 7 days and until transferred out of ICU (alternative: 80 mg bolus followed by 80 mg/240 ml normal saline IV infusion at 10 ml/hr). In patients with an increasing CRP or worsening clinical status increase the dose to 80 mg q 12 hourly (then 125 mg q 12 hourly), then titrate down as appropriate. [230-242] Pulse methylprednisolone 250–500 mg/day for 3 days (followed by taper) may be required.[240] We suggest that all patients admitted to the ICU have a chest CT scan on admission to allow risk stratification based on the extent of the disease; those with extensive disease should be initiated on high dose corticosteroids (see section below on severe COVID). As depicted in Table 2, methylprednisolone is the corticosteroid of choice. Observational and randomized studies have clearly demonstrated the superiority of methylprednisolone over low dose dexamethasone.[277,278] These clinical findings are supported by a genomic study.[141] Methylprednisolone should be weaned slowly over two weeks once oxygen is discontinued to prevent relapse/recurrence (20mg twice daily once of oxygen, then 20 mg/day for 5 days, then 10 mg/day for 5 days). While 1) methylprednisolone is the corticosteroid of choice (see below) in those regions/countries where it is not available the following (in order of preference) may be substituted for methylprednisolone (dose adjusted according to methylprednisolone dosages), 2) prednisone, 3) prednisone, 4) hydrocortisone, and 5) LASTLY dexamethasone.

2. **Ascorbic acid (Vitamin C)** 50 mg/kg (or 3000 mg) IV q 6 hourly for at least 7 days and/or until transferred out of ICU.[54,63,64,279-289]. Mega-dose vitamin C should be considered in severely ill patients, those with progressive respiratory failure and as salvage therapy: 25 g vitamin C in 200-500 cc saline over 4-6 hours every 12 hourly for 3-5 days, then 3g IV q 6 hourly for total of 7-10 days of treatment [290] (also see https://www.youtube.com/watch?v=Au-mp6RZjCQ). Mega-dose Vitamin C appears safe in patients with ARF and ESRD. In patients with CRF a dose of 12.5 g q 12 hourly may be an adequate compromise.[291] In the study by Lankadeva et al, mega-dose vitamin C increased renal cortical blood flow and renal cortical PO2; oxalate crystals were not detected.[290] Note caution with POC glucose testing (see below). Oral absorption is limited by saturable transport and it is difficult to achieve adequate levels with PO administration. However, should IV Vitamin C not be available, it would be acceptable to administer PO vitamin C at a dose of 1g every 4–6 hours.

3. **Anticoagulation**: An interim analysis of the ATTACC, ACTIV-4a & REMAP-CAP trials demonstrated a marginally increased mortality in ICU patients treated with full anti-coagulation (35.3% vs. 32.6%. [292] Critically ill COVID-19 patients frequently have impaired renal and it is likely that in the absence of Xa monitoring patients were over-anticoagulated. However, full anti-coagulation should be continued on floor patients transitioned to the ICU who have normal renal function. In all other patients we would suggest intermediate dose enoxaparin i.e 60 mg/day (enhanced thromboprophylaxis) or 0.5 mg/kg q 12 hourly.[293] Full anticoagulation (enoxaparin or heparin) may be required in patients with increasing D-dimer or with thrombolic complications. Due to augmented renal clearance some patients may have reduced anti-Xa activity despite standard dosages of LMWH.[236] We therefore recommend monitoring anti-Xa activity aiming for an anti-
Xa activity of 0.5 – 0.9 IU/ml. Heparin is suggested with CrCl < 15 ml/min. It should also be appreciated that vitamin C is a prerequisite for the synthesis of collagen and vitamin C deficiency is classically associated with vascular bleeding. [63,64] This is relevant to COVID-19, as vitamin C levels are undetectable in severely ill COVID-19 patients and this may partly explain the increased risks of anticoagulation in ICU patients (not treated with vitamin C). [294-296] The use of the novel oral anticoagulants (NOAC/DOAC) is not recommended. [297]

Note: A falling SaO2 and the requirement for supplemental oxygen should be a trigger to start anti-inflammatory treatment.

Note: Early termination of ascorbic acid and corticosteroids will likely result in a rebound effect with clinical deterioration.

Additional Treatment Components

4. Highly recommended: Ivermectin 0.4 – 0.6 mg/kg day orally for 5 days or until recovered [18,24-26,120,123-130,226-228,298-304]. A higher dose (0.6mg/kg) is suggested in patients with severe disease and/or those with delayed initiation of therapy. Note that ivermectin has potent antiviral and anti-inflammatory effects. As noted above clinical outcomes are superior with multiday as opposed to single day dosing. Furthermore, as indicated above, higher dosages and a longer treatment course are suggested with the Delta variant.

5. Melatonin 10 mg at night (the optimal dose is unknown).[94-96]

6. Calcifediol 0.2–0.5 mg (25-OH Vitamin D). [133] This should be followed by 0.2 mg calcifediol weekly until discharged from hospital. Should calcifediol not be available, supplement with vitamin D3 (cholecalciferol) 20,000–60,000 IU single oral dose, followed by 20,000 IU D3 weekly until discharged from hospital. In the acute setting calcifediol appears to be more effective than vitamin D3. [134] Vitamin D3 takes many days to be converted to 25OH vitamin D; [305] this may explain the lack of benefit of D3 in patients hospitalized with severe COVID-19. [49]

7. Thiamine 200 mg IV q 12 hourly for 3-5 days then 200mg daily [306-311] Thiamine may play a role in dampening the cytokine storm. [307,312]

8. ASA 325 mg. COVID infection results in profound platelet activation contributing to the severe pro-thrombotic state and increasing the inflammatory response.[143,144,244,245] As the risk of significant bleeding is increased in patients receiving both ASA and heparin, ASA should therefore not be used in patients at high risk of bleeding. In addition (as noted below) patients should receive famotidine concurrently.

9. The anti-serotonin agent, cyproheptadine. Platelet activation results in the release of serotonin, which may contribute to the immune and vascular dysfunction associated with COVID-19. [215-219] Therefore, the serotonin receptor blocker cyproheptadine 4–8 mg PO q 6 hours should be considered.

11. Fluvoxamine 50 -100 mg BID. Fluoxetine 20-40mg daily is an alternative.

12. Vascepa (Ethy eicosapentaenoic acid) 4g daily or Lovaza (EPA/DHA) 4g daily; alternative DHA/EPA 4g daily. Vascepa and Lovaza tablets must be swallowed and cannot be crushed, dissolved, or chewed.

13. Atorvastatin 40- 80 mg/day (reduce dose to 40 mg if taken with ivermectin due to possible drug-drug interaction. Preliminary data suggests atorvastatin may improve outcome in patients with COVID-19.[238-242] Due to numerous drug-drug interactions simvastatin should be avoided.

14. Magnesium: 2 g stat IV. Keep Mg between 2.0 and 2.2 mmol/l. [107] Prevent hypomagnesemia (which increases the cytokine storm and prolongs Qtc). [313-315]

15. Optional: Famotidine 40 mg BID (20–40 mg/day in renal impairment). [109-115].

16. Optional: JAK inhibitors ruxolitinib or baricitinib.
17. Optional (In MEN ONLY): The anti-androgen agent’s dutasteride 0.5 mg/day, proxalutamide 200 mg daily or finasteride 5 mg daily. It should be noted that proxalutamide in not available in the USA.

18. Unclear benefit. CCR5 antagonists, including Maraviroc. [316] CCR5 is a chemokine that activates macrophages/monocytes and whose circulating levels are significantly increased in COVID-19.[317,318] Blocking the CCR5 receptor (CCR5R) repolarizes macrophages/monocytes and decreases the production of proinflammatory cytokines (see section on repolarizing macrophages/monocytes).

19. Not recommended: The best information to date suggests that prophylactic azithromycin as well as doxycycline and quinolone antibiotics are of little benefit in patients with COVID-19.[223,319,320] Patients with COVID-19 are at an increased risk of developing bacterial superinfections and prophylactic antibiotics may increase the risk of infection with multiresistant organisms.

20. Not recommended: Remdesivir. This drug has no benefit at this stage of the disease.

21. Not recommended. Convalescent serum [321-326] nor monoclonal antibodies. [327] However, convalescent serum/monoclonal antibodies may have a role in patients with hematologic malignancies.[328]

22. Not recommended. Colchicine (see above).

23. Not recommended. Tocilizumab. Five RCTs have now failed to demonstrate a clinical benefit from tocilizumab. [329-333] Considering the effect of IL-6 inhibitors on the profile of dysregulated inflammatory mediators this finding is not surprising. [274] Tocilizumab may have of benefit in patients receiving an inadequate dose of corticosteroids.[334] In patients who receive an adequate therapeutic dose of corticosteroid the role of this drug appears limited.

24. Broad-spectrum antibiotics if superadded bacterial pneumonia is suspected based on procalcitonin levels and resp. culture (no bronchoscopy). Due to the paradox of hyper-inflammation and immune suppression (a major decrease of HLA-DR on CD14 monocytes, T cell dysfunction and decreased CD4 and CD8 counts) secondary bacterial and fungal infections (Candida and Aspergillus species) and viral reactivation is not uncommon. [335-337] Patients with non-resolving fever, increasing WBC count and progressive pulmonary infiltrates should be screened for COVID-19-associated pulmonary aspergillosis (CAPA). [338] Recommended first-line therapy for CAPA is either voriconazole or isavuconazole (beware drug-drug interactions). While low CD4 counts are typical of severe COVID-19 infection, PJP infections have not been reported; therefore PJP prophylaxis is not required.

25. Maintain EUVOLEMIA (this is not non-cardiogenic pulmonary edema). Due to the prolonged “symptomatic phase” with flu-like symptoms (6–8 days) patients may be volume depleted. Cautious rehydration with 500 ml boluses of Lactate Ringers may be warranted, ideally guided by non-invasive hemodynamic monitoring. Diuretics should be avoided unless the patient has obvious intravascular volume overload. Avoid hypovolemia.

26. Early norepinephrine for hypotension. It should however be appreciated that despite the cytokine storm, vasodilatory shock is distinctly uncommon in uncomplicated COVID-19 (when not complicated by bacterial sepsis). This appears to be due to the fact that TNF-α which is “necessary” for vasodilatory shock is only minimally elevated.

27. Escalation of respiratory support (steps); Try to avoid intubation if at all possible. Intubation is indicated in patients who have failed non-invasive ventilation and in those patients with excessive work of breathing. A sub-group of patients with COVID-19 deteriorates very rapidly. Intubation and mechanical ventilation may be required in these patients.
 a. Accept “permissive hypoxemia” (keep O2 Saturation > 84%); follow venous lactate and Central Venous O2 saturations (ScvO2) in patents with low arterial O2 saturations
 b. N/C 1–6 L/min
 c. High Flow Nasal canula (HFNC) up to 60–80 L/min
 d. Trial of inhaled Flolan (epoprostenol)
 e. Attempt proning (cooperative repositioning-pronning) [339-342]
f. Intubation ... by Expert intubator; Rapid sequence. No Bagging; Full PPE. Crash/emergency intubations should be avoided.
g. Volume protective ventilation; Lowest driving pressure and lowest PEEP as possible. Keep driving pressures < 15 cm H₂O.
h. Moderate sedation to prevent self-extubation
i. Trial of inhaled Flolan (epoprostenol)
j. Prone positioning.

There is widespread concern that using HFNC could increase the risk of viral transmission. There is however, no evidence to support this fear.[343] HFNC is a better option for the patient and the health care system than intubation and mechanical ventilation. CPAP/BiPAP may be used in select patients, notably those with COPD exacerbation or heart failure.

Table 2: Comparison of Methylprednisolone, Dexamethasone and Hydrocortisone- Number Need to Treat (NNT)

<table>
<thead>
<tr>
<th>PUBLISHED RCT’s/COHORT STUDIES OF CORTICOSTEROID THERAPY IN COVID-19</th>
<th>ABSOLUTE DIFFERENCE IN MORTALITY RATE (Rx Group vs. Control Group)</th>
<th>ESTIMATED NUMBER NEEDED TO TREAT TO SAVE ONE LIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHYPREDSISONE – HOSPITAL PATIENTS (Edalatifard et al, Iran)</td>
<td>5.9% vs. 42.9%</td>
<td>2.7</td>
</tr>
<tr>
<td>METHYPREDSISONE – ICU PATIENTS (Salton et al, Italy)</td>
<td>7.2% vs. 23.3%</td>
<td>6.2</td>
</tr>
<tr>
<td>METHYPREDSISONE – HOSPITAL PATIENTS, (Fadel et al, USA)</td>
<td>13.6% vs. 26.3%</td>
<td>7.8</td>
</tr>
<tr>
<td>METHYPREDSISONE- ARDS PATIENTS (Wu C et al- China)</td>
<td>46.0% vs. 61.8%</td>
<td>6.3</td>
</tr>
<tr>
<td>METHYPREDSISONE - Pts on oxygen – (Fernandez-Cruz, Spain)</td>
<td>13.9% vs. 23.9%</td>
<td>10.0</td>
</tr>
<tr>
<td>CoDEX –DEXAMETHASONE - MECHANICAL VENTILATION</td>
<td>56.3% vs 61.5%</td>
<td>19.2</td>
</tr>
<tr>
<td>RECOVERY TRIAL (DEXAMETHASONE)</td>
<td>PTS ON OXYGEN</td>
<td>23.3% vs. 26.2%</td>
</tr>
<tr>
<td></td>
<td>PTS ON MV</td>
<td>29.3% vs. 41.4%</td>
</tr>
<tr>
<td>HYDROCORTISONE -CAPE-COVID – ICU Patients (Dequin et al France)</td>
<td>14.7% vs 27.4%</td>
<td>7.9</td>
</tr>
<tr>
<td>HYDROCORTISONE –REMAP-CAP – ICU patients</td>
<td>28% vs 33%</td>
<td>20.0</td>
</tr>
</tbody>
</table>
An Approach to the patient with SEVERE Life threatening COVID-19 Organizing Pneumonia

The first task of the clinician is to determine the reversibility of the pulmonary disease.... This is a critical assessment. Aggressive anti-inflammatory treatment is futile in patients with advanced fibrotic lung disease.... The horse has already bolted and allowing the patient a “peaceful death” is the most compassionate and humane approach. The reversibility of the pulmonary is dependent on a number of factors superseded by a good deal of clinical judgement; these include:

a) The length of time that has elapsed since the onset of symptoms. Early aggressive treatment is critical to prevent disease progression. With each day the disease becomes more difficult to reverse. The ‘traditional’ approach of supportive care alone is simply unacceptable.

b) The level of inflammatory biomarkers particularly the CRP. In general the CRP tracks the level of pulmonary inflammation.[344] A high CRP is indicative of a hyper-inflammatory state and potentially reversible pulmonary inflammation.

c) It is likely that advanced age is a moderating factor making the pulmonary disease less reversible.

d) A chest CT is extremely helpful in determining the reversibility of disease. BEWARE this is not ARDS but organizing pneumonia.[345] The extent of the pulmonary involvement may be determined qualitatively or preferably quantitatively (see Figure 8).[344,346-352] The Ichikado is a useful quantitative score to evaluate the extent of lung involvement with COVID-19.[353,354] The changes in the CT follow a stereotypic progressive pattern:

I. Peripheral, patchy, predominantly basal ground glass opacification (GGO). GGO is defined as an increase in density of lung with visualization of bronchial and vascular structures through it

II. Progressive widespread bilateral GGO

I. Crazy paving (CGO with interlobular and intralobular septal thickening)

II. Air space consolidation (air bronchograms)

III. Dense airspace consolidation

IV. Coalescent consolidation

V. Segmental/subsegmental pulmonary vessel dilatation

VI. Bronchial wall thickening

VII. Linear opacities

VIII. Traction bronchiectasis

IX. Cavitation

X. Fibrotic changes with bullae and reticulation

GGO pattern is significantly more prevalent in early-phase disease compared with late-phase disease while crazy-paving and consolidation patterns are significantly more common in late-phase.[344] Therefore widespread GGO suggests reversibility while widespread consolidation with other features of more advanced disease suggest irreversible lung disease. However, when in doubt (borderline cases) a time limited therapeutic trial of the aggressive full “Monty” approach may be warranted.
The FULL “MONTY” for SEVERE COVID Pulmonary disease

I. Methylprednisolone 250-500 mg q 12 hourly for at least 3 days then titrate guided by clinical status and CRP.
II. Ivermectin 0.6 mg/kg for 5 days
III. Vitamin C 3 g 6 hourly to 25g q 12 hourly
IV. Cyproheptadine 4–8 mg PO q 6 hourly
V. Melatonin 10 mg PO at night
VI. Enoxaparin 60 mg daily; critically ill patients usually have some degree of renal impairment and will require a renally adjusted lower dose. Patients with very high D-dimer and or thrombotic complications may require full anti-coagulant doses of Lovenox. It may be prudent to monitor Xa levels aiming for 0.4-0.8 IU/ml (a somewhat lower anti-Xa).
VII. Fluvoxamine 50- 100 mg BID
VIII. Atorvastatin 80 mg/day (reduce dose to 40mg if taken with ivermectin due to possible drug-drug interaction)
IX. Omega-3 fatty acids
X. Famotidine 40 mg BID
XI. Thiamine 200 mg q 12 hourly
XII. MEN only: Finasteride 5 mg daily or dutasteride 0.5 mg daily
While it is unclear which of the above medications included in the “Severe Covid-19” cocktail contributes to improved outcomes, all of these drugs have been shown to be safe and independently to improve the outcome of patients with COVID-19. Ultimately it is irrelevant as to the contribution of each element as long as the patient improves and survives his/her ICU stay. We are in the midst of a pandemic caused by a virus causing devastating lung disease, and there is no place for “ivory tower medicine”.

Salvage Treatments

- High dose bolus corticosteroids; 500–1000 mg/day methylprednisolone for 3 days then taper. [238,240]
- Plasma exchange [355-361]. Should be considered in patients with progressive oxygenation failure despite corticosteroid therapy as well as in patients with severe MAS. Patients may require up to 5 exchanges. FFP is required for the exchange; giving back “good humors” appears to be more important than taking out “bad humors”.
- Mega-dose vitamin C should be considered in severely ill patients and as salvage therapy: 25g vitamin C in 200-500 cc saline over 4-6 hours, 12 hourly for 3-5 days, then 3g IV q 6 hourly for total of 7-10 days of treatment.[290,291] (also see https://www.youtube.com/watch?v=Au-mp6RZjCQ)
- In patients with a large dead-space ventilation i.e. high PaCO₂ despite adequate minute ventilation consider “Half-dose rTPA” to improve pulmonary microvascular blood flow; 25mg of tPA over 2 hours followed by a 25mg tPA infusion administered over the subsequent 22 hours, with a dose not to exceed 0.9 mg/kg followed by full anticoagulation.[362,363]
- Etoposide IV once per week at 50 mg/m² until improved. [364,365] Severe-COVID pneumonia/organizing pneumonia is in essence caused by the “pulmonary macrophage activation syndrome”. [366,367] Similar to the treatment of macrophage activation syndrome and HLH, etoposide may reduce macrophage numbers and improve outcome.[368-370] Etoposide is a chemotherapeutic agent and the risk/benefits should be considered in consultation with a hematologist. Furthermore, the changes in the hematological profile should be closely monitored.
- Combination inhaled nitric oxide (or epoprostenol) and intravenous almitrine (10 – 16 ug/kg/min). The combination of inhaled nitric oxide, a selective pulmonary vasodilator, and almitrine, a specific pulmonary vasoconstrictor, may improve the severe V/Q mismatch in patients with severe COVID-19 “pneumonia”. [371-374]
- ECMO [375-377]. Unlike “typical ARDS”, COVID-19 patients may not progress into a resolution phase. Rather, patients with COVID-19 with unresolved inflammation may progress to a severe fibro-proliferative phase and ventilator dependency. ECMO in these patients would likely serve little purpose. ECMO however may improve survival in patients with severe single organ failure (lung) if initiated within 7 days of intubation. [378]
- Lung transplantation. [379]

Salvage treatments of unproven/no benefit.

- Convalescent serum/monoclonal antibodies: Four RCT’s failed to demonstrate a clinical benefit with the use of convalescent serum. [321-323,325,326] Eli Lilly suspended the ACTIV-33 clinical trial as their monoclonal antibody failed to demonstrate a clinical benefit in hospitalized patients.[380] It is noteworthy that the only RCT demonstrating efficacy of convalescent plasma for an infectious disease was conducted more than 40 years ago, for treating Argentine hemorrhagic fever. [211] Furthermore, giving antibodies directed against SARS-CoV-2 appears
pointless when the virus is already DEAD (pulmonary phase). In addition, IgG is a large protein which penetrates tissues poorly, and is unlikely to achieve submucosal concentrations required for mucosal immunity.[381] And lastly, COVID-19 pulmonary disease is immune mediated, and it would therefore appear paradoxical to enhance the antibody response with convalescent serum. [382]

- In patients hospitalized with severe COVID-19, Canakinumab, an anti–interleukin-1β antibody failed to improve any outcome measure. [383]
- In patients with progressive fibrosis the combination of anti-fibrotic therapy with corticosteroids should be considered. [384-387] It should however be recognized that unlike all the medications in the MATH+ protocol, pirfenidone and nintedanib have complex side-effects and drug interactions and should be prescribed by pulmonary physicians who have experience with these drugs.
- CVVH/D with cytokine absorbing/filtering filters [388,389] This treatment strategy appears to have an extremely limited role.

Treatment of Macrophage Activation Syndrome (MAS)

- Severe-COVID pneumonia/organizing pneumonia is in essence caused by the “pulmonary macrophage activation syndrome” and the distinction between severe COVID and MAS is unclear (see below). [366,367]
- A ferritin > 4400 ng/ml is considered diagnostic of MAS. Other diagnostic features include increasing AST/ALT and CRP and progressive multi-system organ failure.[368]
- “High dose corticosteroids.” Methylprednisolone 500-1000 mg daily for three days and then then wean according to Ferritin, CRP, AST/ALT. Ferritin should decrease by at least 15% before weaning corticosteroids.
- Similar to the treatment of macrophage activation syndrome and HLH, etoposide may reduce macrophage numbers and improve outcome (see above).[368-370] The combination of high dose corticosteroids and “low-dose” etoposide is an effective treatment for MAS.
- Consider plasma exchange.

Monitoring

- On admission: Procalcitonin (PCT), CRP, BNP, Troponins, Ferritin, Neutrophil-Lymphocyte ratio, D-dimer and Mg. CRP and D-dimer are important prognostic markers.[390] A PCT is essential to rule out coexisting bacterial pneumonia.[391]
- As indicated above (corticosteroid section), a chest CT scan on admission to the ICU is very useful for risk stratification and for the initial corticosteroid dosing strategy. The Ichikado Score is a quantitative method to assess the extent of lung involvement on the CT scan.[353,392] Follow-up CXR, CT scan (if indicated) and chest ultrasound as clinically indicated.
- Daily: CRP, Ferritin, D-Dimer and PCT. CRP and Ferritin track disease severity closely (although ferritin tends to lag behind CRP). Early high CRP levels are closely associated with the degree of pulmonary involvement and the CT score. [393]
- In patients receiving IV vitamin C, the Accu-Chek™ POC glucose monitor will result in spuriously high blood glucose values. Therefore, a laboratory glucose is recommended to confirm the blood glucose levels. [394,395]
- ECHO as clinically indicated; Patients may develop a severe “septic” cardiomyopathy and/or COVID-19 myocarditis. [396,397]
Post ICU management
- Enoxaparin 40–60 mg s/c daily
- Methylprednisolone 40 mg day, then wean slowly, follow CRP and oxygen requirements – wean off over two weeks once oxygen is discontinued to prevent relapse/recurrence
- Vitamin C 500 mg PO BID
- Melatonin 3–6 mg at night
- Vascepa, Lovaza or DHA/EPA 4g day
- Atorvastatin 40mg daily

Post Hospital Discharge management
a. Patients have an increased risk of thromboembolic events post-discharge. [398,399] Extended thromboprophylaxis (? with a DOAC) should be considered in high-risk patients. Risk factors include:[400]
 i. Increased D dimer (> 3 times ULN)
 ii. Increased CRP (> 2 times ULN) [401]
 iii. Age > 60
 iv. Prolonged immobilization
b. Patients with unresolved pulmonary infiltrates and/or those who remain dyspneic and/or oxygen dependent should be discharged on a tapering course of corticosteroids (prednisone).
c. Patients should continue to receive vitamin C, melatonin, omega-3 fatty acids and a statin. These agents may reduce this risk of developing the post-COVID syndrome.
d. Patients should be followed/monitored for developing the post-COVID/long hauler syndrome.
Basic Concept:
Need to Understand the Disease to Treat the Disease

The pathophysiology of COVID-19

- **Pulmonary Macrophage Activation Syndrome**
 - Severe hyperinflammatory status
- **Microvascular endothelialitis and thrombosis**
 - Activation of clotting esp. platelet thrombi in lung and brain
 - High circulating serotonin
 - Arterial vasoconstriction
 - V/Q mismatch
 - Organ ischemia
- Multiple autoantibodies
- Mast cell activation – histamine release
- ACE-2 deficiency
 - Excess angiotensin II/angiotensin 1-7
- T cell dysfunction

Based on clinical, proteomic, and genomic studies as well as autopsy data severe COVID-19 disease can be considered to be the connection of three basic pathologic processes, namely a pulmonary macrophage activation syndrome with excess production of cytokines and chemokines and uncontrolled inflammation, a complement mediated endothelialitis together with a pro-coagulant state with a thrombotic microangiopathy (see figure 9). In addition, platelet activation with the release of serotonin and the activation and degranulation of mast cells contributes to the hyper-inflammatory state. Auto-antibodies have been demonstrated in a large number of hospitalized patients which adds to the end-organ damage and pro-thrombotic state. However, activated M1 macrophages appear to be the major driver of severe COVID-19 infection. Similarly, recent data suggests that the Long Haul Covid Syndrome (LHCS) results due to increased circulating levels of activated monocytes with ongoing cytokine production.[317] Interestingly, these monocytes contain high levels of the spike protein.[402] Both activated macrophages and activated monocytes express the same surface activation markers (CD14+, CD16+). This suggests that treatment aimed at repolarizing the macrophage/monocyte should have an important adjunctive role in the treatment of both acute COVID and the LHCS. Those interventions that have been demonstrated to repolarize macrophages/monocytes (from M1 to M2 phenotype) are listed below.

Macrophage/monocyte Repolarization Therapy for COVID-19 and Long Haul COVID Syndrome

- Corticosteroids [403]
- Statins [246,247]
- Omega-3 fatty acids [157-159]
- Melatonin [404]
- Vitamin C (manuscript under review)
Figure 9. Pathogenetic mechanism of severe COVID-19 disease
The Long Haul COVID syndrome (post-COVID syndrome)

The Long Haul COVID Syndrome (LHCS) is characterized by prolonged malaise, headaches, generalized fatigue, sleep difficulties, hair loss, smell disorder, decreased appetite, painful joints, dyspnea, chest pain and cognitive dysfunction.[405-416] Up to 80% of patients experience prolonged illness after Covid-19. LHCS is not only seen after the COVID infection but it is being observed in some people that have received vaccines (likely due to monocyte activation by the spike protein from the vaccine). LHCS may persist for months after the acute infection and almost half of patients report reduced quality of life. Patients may suffer prolonged neuropsychological symptoms, including multiple domains of cognition.[414,417] A puzzling feature of the LHCS syndrome is that it is not predicted by initial disease severity; post-COVID-19 frequently affects mild-to-moderate cases and younger adults that did not require respiratory support or intensive care. [416] The symptom set of LHCS is in majority of the cases very similar to the chronic inflammatory response syndrome (CIRS)/ myalgic encephalomyelitis/chronic fatigue syndrome.[416] An important differentiating factor from CIRS is the observation that LHCS continues to improve on its own albeit slowly in majority of the cases. Another important observation is that LHCS includes more young people compared to severe COVID that affects older people or persons with comorbidities. Furthermore, the similarity between the mast cell activation syndrome and LHCS has been observed, and many consider post-COVID to be a variant of the mast cell activation syndrome.[418]

The LHCS syndrome in highly heterogenous and likely results from a variety of pathogenetic mechanisms. Furthermore, it is likely that delayed treatment (with ivermectin) in the early symptomatic phase will results in a high viral load which increase the risk and severity of LHCS. The following theories have been postulated to explain LHCS: [416]

1. Ongoing respiratory symptoms (SOB, cough, reduced effort tolerance) may be related to unresolved organizing pneumonia (activate pulmonary macrophages).
2. Monocyte activation syndrome. Persistence of viral debris in monocytes results in an ongoing immune response in an attempt by the immune system to clear the offending protein(s) and viral RNA fragments.
3. The neurological symptoms may be related micro- and/or macrovascular thrombotic disease which appears to be common in severe COVID-19 disease.[419] Brain MRIs’ 3 months post-infection demonstrated micro-structural changes in 55% of patients. [420] In addition, features of encephalopathy may be related to encephalitis and auto-reactive brain antibodies [421] as well as severe cerebral vasoconstriction. [422] The brain microvasculature expresses ACE-2 receptors and SARS-CoV-2 “pseudovirions” may bind to the microvascular endothelium causing cerebral microvascular inflammation and clotting.[423]
4. An unmasking of mast cell activation syndrome (MCAS), or triggering of mast cell activation syndrome. Mast cells are present in the brain, especially in the median eminence of the hypothalamus, where they are located perivascularly close to nerve endings positive for corticotrophin releasing hormone.[424] Following stimulation, mast cells release proinflammatory mediators such as histamine, tryptase, chemokines and cytokines which may result in neurovascular inflammation.[424] The “brain-fog”, cognitive impairment and general fatigue reported in long-COVID may be due to mast cell related neurovascular inflammation.

Clinical signs and symptoms can be grouped in the following clusters. The reason for this grouping is to allow organ specific targeted therapy/individualized therapy.

1. Respiratory: shortness of breath, congestion, persistent cough, etc.
2. Neurological/psychiatric: brain fog, malaise, tiredness, headaches, migraines, depression, inability to focus/concentrate, altered cognition, insomnia, vertigo, panic attacks, tinnitus, anosmia, phantom smells, etc.
3. Musculoskeletal: myalgias, fatigue, weakness, joint pains, inability to exercise, post-exertional malaise, inability to perform normal activities of daily life (ADL’s).
5. Autonomic: Postural tachycardia syndrome (POTs), abnormal sweating.
6. GIT disturbance: Anorexia, diarrhea, bloating, vomiting, nausea, etc.
7. Dermatologic: Itching, rashes, dermatographia
8. Mucus membranes: Running nose, sneezing, Burning and itchy eyes.

Approach to Treatment:

The treatment approach should be individualized according to the grouping of clinical signs and symptoms. However, in general, it is likely that patients who received inadequate antiviral treatment (ivermectin) during the acute symptomatic phase and inadequate anti-inflammatory/macrophage repolarization therapy (corticosteroids, statins, omega-3 fatty acids, fluvoxamine, ivermectin, etc) during the acute phase of COVID are much more likely to develop the post-COVID syndrome. In patients with ongoing respiratory symptoms chest imaging is suggested (preferably a chest CT scan). Those with unresolved pulmonary inflammation (organizing pneumonia) should be treated with a course of corticosteroids (prednisone) and closely followed. A CRP should be measured, and extended corticosteroids (titrated to the CRP) offered to these patients. Similar to patients who have recovered from septic shock, [425] a prolonged (many months) immune disturbance with elevated pro- and anti-inflammatory cytokines may contribute to the LHCS. This is likely the consequence of monocyte activation syndrome and monocyte repolarization therapy is therefore indicated. In addition, a cytokine panel may allow targeted anti-inflammatory therapy (Maraviroc in patients with high CCR5 levels) . It should be noted that much like omega-3 fatty acids, corticosteroids have been demonstrated to increase expression of pro-resolving lipids including Protectin D1 and Resolvin D4.[426] An unknown number of patients who have recovered from COVID-19 organizing pneumonia will develop pulmonary fibrosis with associated limitation of activity. Pulmonary function testing demonstrates a restrictive type pattern with decreased residual volume and DLCO.[411] These patients should be referred to a pulmonologist with expertise in pulmonary fibrosis. Anti-fibrotic therapy may have a role in these patients, [384-387] however additional data is required before this therapy can be more generally recommended. As discussed above, the serotonin receptor blocker cyproheptadine may reduce the risk of pulmonary fibrosis. [267]
I-RECOVER: The I-RECOVER Protocol for the treatment of the “Long-haul COVID Syndrome”.

Although numerous reports describe the epidemiology and clinical features of LHCS, studies evaluating treatment options are glaringly sparse. Indeed, the NICE guideline for managing the long-term effects of COVID-19 provide no specific pharmacologic treatment recommendations. In general, while the treatment of ‘Long COVID’ should be individualized, the following treatments may have a role in the treatment of this disorder. In addition, the I-RECOVER protocol may have a role in the treatment of the post-vaccination syndrome.

- Ivermectin has been reported to have a role in the treatment of post-COVID-19 syndrome. A dose of 0.2-0.4 mg/kg day for 3-5 days, followed by once or twice weekly dosing for ongoing symptoms for up to 4 weeks. A repeat course is recommended in those who respond poorly or relapse once the treatment is stopped. The anti-inflammatory properties of ivermectin may mediate this benefit.
- Prednisone if inadequate response to ivermectin. Prednisone 0.5mg/kg daily for 5 days, 0.25mg/kg for 5 days followed by 0.12 mg/kg for 5 days. Patients with persistent organizing pneumonia may require higher doses for a more prolonged period of time.
- Vitamin C 500 mg BID (vitamin C inhibits histamine and repolarizes monocytes).
- Omega-3 fatty acids: Vascepa, Lovaza or DHA/EPA 4 g day. Omega-3 fatty acids play an important role in the resolution of inflammation by inducing resolvin production.
- Melatonin 2-10 mg at night (slow release/extended release) with attention to sleep hygiene. Increase dose from 2mg as tolerated (may cause severe nightmares at high dosages)
- Vitamin D3 1000-3000 u/day
- Atorvastatin 40 mg daily (increase resolvin synthesis and repolarized macrophages)
- Functional rehabilitation with light aerobic exercise paced according to individual capacity.
- Behavioral modification, mindfulness therapy and psychological support may help improve survivors’ overall well-being and mental health.
- **Optional:** Luteolin 100-200 mg day or quercetin 250 mg day (or mixed flavonoids). Luteolin and quercetin have broad spectrum anti-inflammatory properties. These natural flavonoids inhibit mast cells and have been demonstrated to reduce neuroinflammation.
- **Optional:** Famotidine 20-40 mg day (histamine-2 blocker for Mast Cell Activation syndrome).
- **Optional:** Fluvoxamine, especially in those with neurocognitive issues. Start at 25 mg daily, Increase slowly to 50-100 mg day. Monitor response closely as some patients will respond poorly to this medication. Teens and young adults who are prescribed fluvoxamine can experience acute anxiety which needs to be monitored for and treated by the prescribing clinician to prevent rare escalation to suicidal or violent behavior.
- **Optional:** Maraviroc in patients with high CCR5 levels.
- **Optional:** H1 receptor blockers (for mast cell activation syndrome). Loratadine 10mg daily, Cetirizine 5-10mg daily, Fexofenadine 180mg daily.
- **Optional:** montelukast 10 mg/day (for mast cell activation syndrome). Caution as may cause depression in some patients.
I-RECOVER
Management Protocol for Long-haul COVID Syndrome (LHCS)

The approach outlined below is a simplified, consensus protocol based on a collaboration led by Dr. Moeen Syed ("Dr. Been"), Dr. Ram Yogendra, Dr. Bruce Patterson, Dr. Tina Peers, and the FLCCC Alliance. Given the lack of clinical treatment trials of Long-haul Covid Syndrome, these recommendations are based on the pathophysiologic mechanisms of COVID and post-viral illnesses along with our collective experience observing profound and sustained clinical responses achieved with the treatment approaches below.

This protocol has also been used to treat post-vaccine inflammatory syndromes with similar success. As with all FLCCC Alliance protocols, the components, doses, and durations will evolve as more clinical data accumulates. Several members of this collaboration employ various adjunctive therapies they have found beneficial. Info on these approaches can be found on page 3.

Initial therapy of Long-haul Covid Syndrome:

IVERMECTIN
0.2–0.4 mg/kg dose once daily with meals* for 3–5 days (higher doses are sometimes needed in anemia).
* Take on empty stomach if presenting with nausea/diarrhea/anorexia.

After 3–5 days, change to once or twice weekly depending on the time to symptom recurrence/persistence.
Discontinue after 2–4 weeks if all symptoms have resolved and do not recur.
Relative Contraindications:
- Patients on Warfarin require close monitoring and dose adjustment.
- Pregnant or lactating women require a more in-depth risk/benefit assessment.

If not all symptoms resolve with ivermectin:

CORTICOSTEROID THERAPY
A tapering dose of prednisone as follows:
1. 0.5 mg/kg daily for 5 days
2. 0.25 mg/kg daily for 5 days
3. 0.12 mg/kg daily for 5 days
Take in morning to lessen impact on sleep.
Side effects may include: Increased appetite, mood changes, insomnia, raised blood glucose, dyspepsia.

Recommended to support the LHCS therapy:

SUPPLEMENTS
- Vitamin C: 500 mg twice daily.
- Vitamin D3: 2,000–4,000 IU daily.
- Melatonin: 2–10 mg nightly – start with low dose, increase as tolerated in absence of sleep disturbance.

If presenting with neurologic symptoms, i.e. poor concentration, forgetfulness, mood disturbance:

FLUVOXAMINE
50 mg – twice daily for 15 days.
Reduce dose or discontinue if side effects develop. Doses as low as 9 mg twice daily have shown efficacy.

If presenting with shortness of breath or low oxygen levels:

PULMONARY EVALUATION
Refer to lung specialist if available, otherwise perform chest imaging (CT preferred) to assess for secondary organizing Pneumonia (OP).
If findings consistent with secondary OP found, initiate Corticosteroid Therapy as below. May need to repeat or prolong course of treatment if symptoms or oxygen needs persist.

If symptoms still unresolved or recur after ivermectin and corticosteroid regimens:

TREATMENT OF SUSPECTED MAST CELL ACTIVATION
Choose a Type I and Type II antihistamine along with a mast cell stabilizer – for example, Loratadine, Famotidine, and Rupatadine. Change medicines if poor response. US FDA approved doses of many of the below medicines are daily, but can increase to three times daily with caution and close monitoring if poor response.

First-line Therapy
- Low histamine diet
 - Type I antihistamines:
 - Use up to TDS: Loratadine 10 mg, or Cetirizine 10 mg, or Fexofenadine 180 mg
 - Type II antihistamines:
 - twice daily: Famotidine 20 mg, or Nizatidine 150 mg
 - Mast cells stabilizers:
 - Rupatadine 10 mg, or Ketotifen 1 mg, plus or minus
 - Sodium Cromoglycate 200 mg TDS (increase slowly) or Quercetin 500 mg TDS

Second-line Therapy
- Montelukast 10 mg (beware depression in some)
- Low Dose Naltrexone (LDN; avoid if taking opiates), start with 0.5 mg daily increasing by 0.5 mg weekly up to 4.5 mg daily
- Diazepam 0.5-1 mg twice daily
- SSRIs

Please regard our disclaimer on page 3.
For more information on the treatment protocols of the FLCCC Alliance please see: flccc.net
Key Concepts of the I-MASK and MATH+ Treatment Protocols

This is an extraordinarily complex disease; many of the mysteries are still unravelling. However, a number of concepts are key to the management of this “treatable disease”; they include.

1. Patients transition through a number of different phases (clinical stages). The treatment of each phase is distinct ... this is critically important (see Figures 1 & 2).
2. Antiviral therapy is likely to be effective only during the viral replicative phase whereas anti-inflammatory therapy is expected to be effective during the pulmonary phase and possibly the post-COVID-19 phase. While Remdesivir is a non-specific antiviral agent that targets RNA viruses, it is likely that agents specifically designed to target SARS-CoV-2 will be developed.
3. The SARS-CoV-2 PCR remains positive for at least 2 weeks following detection of whole virus (by culture, See figure 3). Patients who progress to the pulmonary phase are usually PCR positive despite cessation of viral replication (and are therefore less likely to be infectious).
4. Due to the imperfect sensitivity of the PCR test as many as 20% of patients who progress to the pulmonary phase will be PCR negative (even on repeat testing). At symptom onset PCR will be positive in approximately 60% of patients; maximal positivity rate is on day 8 (post infection) when 80% of patients will be positive (see Figure 3). [434] COVID-19 is essentially a clinical diagnosis supported by laboratory tests.
5. Symptomatic patients are likely to be infectious during a narrow window starting 2–3 days before the onset of symptoms and to up to 6 days after the onset of symptoms (see Figure 3).[435]
6. It is important to recognize that COVID-19 patients present with a variety of phenotypes, likely dependent on inoculum size and viral load, SARS-CoV-2 variant, genetic heterogeneity mutations and polymorphisms, biotypes, blood type, sex and androgen status, age, race, BMI (obesity), immunological and nutritional status, and co-morbidities.[233,436-446] The phenotype at presentation determines the prognosis and impacts the optimal approach to treatment. It is noteworthy that obesity and increasing BMI are critical prognostic factors. This may be related to the fact that there are more ACE-2 receptors in visceral fat than in the lung. [447]
7. The pulmonary phase is characterized by immune dysregulation, [419,439,448-461] a pulmonary microvascular injury (vasculopathy),[419,461-464] with activation of clotting and a pro-coagulant state together with the characteristics of an organizing pneumonia. [345,465]
8. Endothelial damage and an imbalance of both innate and adaptive immune responses, with aberrant macrophage activation, plays a central role in the pathogenesis of the severe COVID-19 Disease. [419]
9. As patients, progress down the pulmonary cascade the disease becomes more difficult to reverse. The implications of this are twofold.
 a. Early treatment (of the pulmonary phase) is ESSENTIAL to a good outcome.
 b. Treatment in the late pulmonary phase may require escalation of the dose of corticosteroids as well as the use of salvage methods (i.e., plasma exchange). However, patients who present in the late pulmonary phase may have progressed to the irreversible pulmonary fibroproliferative phase.
10. The pulmonary phase of COVID-19 is a treatable disease; it is inappropriate to limit therapy to “supportive care” alone. Furthermore, it is unlikely that there will be a single “silver bullet” to treat severe COVID-19 disease. Rather, patients will require treatment with multiple drugs/interventions that have synergistic and overlapping biological effects. Repurposed FDA approved drugs that are safe, inexpensive, and “readily” available are likely to have a major therapeutic effect on this disease. The impact of COVID-19 on middle- and low-income countries is enormous; these countries are not able to afford expensive propriety “designer” molecules.
11. The radiographic and pathological finding of COVID-19 lung disease are characteristic of a Secondary Organizing Pneumonia (and not ARDS). [345,466,467]

12. THIS is NOT ARDS (at least initially), but rather an organizing pneumonia. The initial pulmonary phase neither looks like, smells like nor is ARDS.[468-470] The ground glass infiltrates are peripheral and patchy, [466] and do not resemble the dependent air space consolidation (sponge/baby lung) seen with “typical ARDS”. [471] Extravascular lung water index (EVLWI) is normal or only slightly increased; this by definition excludes non-cardiogenic pulmonary edema (ARDS). Lung compliance is normal (this excludes ARDS). Patients are PEEP unresponsive. Treating patients as if they ARDS is an extremely dangerous approach. The hypoxia is due to a organizing pneumonia with severe ventilation/perfusion mismatch likely due to the microvascular narrowing, thrombosis and vasoplegia.

13. The core principles of the pulmonary phase (MATH+) is the use of anti-inflammatory agents to dampen the “cytokine storms” together with anticoagulation to limit the microvascular and macrovascular clotting and supplemental oxygen to help overcome the hypoxia.

14. Ivermectin has emerged as a highly effective drug for the prophylaxis and treatment COVID-19. Ivermectin inhibits viral replication and has potent anti-inflammatory properties. Emerging clinical data (including RCT’s) suggest that ivermectin may have an important clinical benefit across the spectrum of phases of the disease, i.e pre-exposure prophylaxis, postexposure prophylaxis, during the symptomatic phase and during the pulmonary phase. [18,24-26,120,123-129,226-228,298-304,472] In the recommended dosages, Ivermectin is remarkably safe and effective against SARS-CoV-2. However, as noted above there is the potential for serious drug-drug interaction.

15. The pulmonary phase of COVID-19 is characterized by PROLONGED immune dysregulation that may last weeks or even months. The early and abrupt termination of anti-inflammatory agents will likely result in rebound inflammation. [473]

16. SARS-CoV-2 as compared to all other respiratory viruses, upregulates cytokines and chemokines while at the same time down regulating the expression of Interferon alpha (the hosts primary antiviral defence mechanism). [131,155] Low innate antiviral defenses and high pro-inflammatory mediators contribute to ongoing and progressive lung injury.

17. An unknown percentage of patients with COVID-19 present with “silent hypoxia” with a blunted respiratory response. This phenomenon may be related to involvement of chemoreceptors of the carotid bodies and/or brain stem dysfunction, [474,475] and necessitates pulse oximetry in symptomatic patients managed at home (as discussed above).

18. It should be recognized that LWMH has non-anticoagulant properties that are likely beneficial in patients with COVID-19, these include anti-inflammatory effects and inhibition of histones.[476] in addition, in vitro studies demonstrate that heparin inhibits SARS-CoV-2 interaction with the ACE-2 receptor and viral entry,[477,478] as well as viral replication [128,479]. Most importantly LWH inhibits heparanase (HPSE).[480] HSE destroys the endothelial glycocalyx increasing endothelial leakiness, activating clotting and potentiating endothelialitis.[480] HPSE levels have been reported to be increased in patients with severe COVID-19 infection. [481] Due to the ease of administration, greater anti-Xa activity and better safety profile we prefer low molecular weight heparin (LMWH) to unfractionated heparin (UFH).

19. The combination of steroids and ascorbic acid (vitamin C) is essential. Both have powerful synergistic anti-inflammatory actions. [281,286] Vitamin C protects the endothelium from oxidative injury.[63,482-484] Furthermore, vitamin C Increases the expression of interferon-alpha [53] while corticosteroids (alone) decrease expression of this important protein. [485-488] It should be noted that when corticosteroids are used in the pulmonary phase (and not in the viral replicative phase) they do not appear to increase viral shedding or decrease the production of type specific antibodies. [235,489] It is likely that heparin (LMWH) acts
synergistically with corticosteroids and vitamin C to protect the endothelium and treat the endothelialitis of severe COVID-19 disease.

20. Notwithstanding the particularly important and impressive results of the Recovery-Dexamethasone study, methylprednisolone is the corticosteroid of choice for the pulmonary phase of COVID-19. This is based on pharmacokinetic data (better lung penetration),[490] genomic data specific for SARS-CoV-2,[141] and a long track record of successful use in inflammatory lung diseases (see Table 2).

And finally: “If what you are doing ain’t working, change what you are doing”
References

52. Kyung Kim T, Lim HR, Byun JS. Vitamin C supplementaion reduces the odds of developing a common cold in Republic of Korea Army recruits: a randomised controlled trial. BMJ Mil Health 2020.
62. Hemila H, Carr A, Chalker E. Vitamin C may increase the recovery rate of outpatient cases of SARS-CoV-2 infection by 70%: reanalysis of the COVID A to Z randomized clinical trial. Research Square 2021.

131. Chamie-Quintero JJ, Hibberd JA, Schein DE. Ivermectin for COVID-19 in Peru: 14-fold reduction in nationwide excess deaths, p=0.002 for effect by state, then 13-fold increase after ivermectin use restricted. medRxiv 2021.

151. Burton MJ, Clarkson JE, Goulao B et al. Antimicrobial mouthwashes (gargling) and nasal sprays to protect healthcare workers when undertaking aerosol-generating procedures (AGPs) on patients without suspected or confirmed COVID-19 infection (Review). Cochrane Database of Syst Rev 2020; 9:CD013628.

279. Fowler AA, Truwit JD, Hite D et al. Vitamin C Infusion for TReatment In Sepsis-Induced Acute Lung Injury- CITRIS-ALI: A Randomized, Placebo Controlled Clinical Trial. JAMA 2018; 322:1261-70.

286. de Melo AF, Homem-de-Mello M. High-dose intravenous vitamin C may help in cytokine storm in severe SARS-CoV-2 infection. Crit Care 2020; 24:500.

332. Peralta EG, Fimia-Duarte R, Cardenas JW et al. Ivermectin, a drug to be considered for the prevention and treatment of
333. Al-Jassim KB, Jawad AA, Al-Masoudi EA et al. Histopathological and biochemical effects of ivermectin on kidney
335. Carvallo H, Hirsch R, Farinella ME. Safety and efficacy of the combined use of Ivermectin, dexamethasone, enoxaparin
336. Heaney RP, Armas LA, Shary JR et al. 25-hydroxylation of vitamin D3: relation to circulating vitamin D3 under various
337. Jiang P. Does hypomagnesemia impact on the outcome of patients admitted to the intensive care unit? A systematic
338. Salem M, Kasinski N, Munoz R et al. Progressive magnesium deficiency increases mortality from endotoxin
341. Menezes RR, Godin AM, Rodrigues FF et al. Thiamine and riboflavin inhibit production of cytokines and increase the
342. Woolum JA, Abner EL, Kelly A et al. Effect of thiamine administration on lactate clearance and mortality in patients
345. Woolum JA, Abner EL, Kelly A et al. Effect of thiamine administration on lactate clearance and mortality in patients
349. Patterson BK, seethamraju H, Dhody K et al. CCR5 inhibition in critical COVID-19 patients decreases inflammatory
351. Futado RH, Berwanger O, Fonseca HA et al. Azithromycin in addition to standard of care versus standard of care alone
India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020; 371:m3939.
351. Li L, Zhang W, Hu Y et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with
363. Hermine O, Mariette X, Tharaux PL et al. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and

482. May JM, Qu ZC. Ascorbic acid prevents oxidant-induced increases in endothelial permeability. Biofactors 2011; 37:46-50.